Ir al contenido

Uso de la distribución gamma para mejorar las predicciones de eventos de larga cola

Para DoorDash, poder predecir eventos de larga cola relacionados con los plazos de entrega es fundamental para garantizar que los pedidos de los consumidores lleguen cuando se espera.

Building a Gigascale ML Feature Store with Redis, Binary Serialization, String Hashing, and Compression

When a company with millions of consumers such as DoorDash builds machine learning (ML) models, the amount of feature data can grow to billions of records with millions actively retrieved during model inference under low latency constraints.

How Artificial Intelligence Powers Logistics at DoorDash

In May, DoorDash participated at the O’Reilly Artificial Intelligence Conference in New York where I presented on “How DoorDash leverages AI in its logistics engine.” In this post, I walk you through the core logistics problem at DoorDash and describe how we use Artificial Intelligence (AI) in our logistics engine.