Ir al contenido

Uso de CockroachDB para reducir los costes de almacenamiento de funciones en un 75%.

Mientras creábamos un almacén de funciones para gestionar el crecimiento masivo de nuestra plataforma de aprendizaje automático ("ML"), nos dimos cuenta de que el uso de una combinación de diferentes bases de datos puede mejorar significativamente la eficiencia y la simplicidad operativa.

How We Applied Client-Side Caching to Improve Feature Store Performance by 70%

At DoorDash, we make millions of predictions every second to power machine learning applications to enhance our search, recommendation, logistics, and fraud areas,  and scaling these complex systems along with our feature store is continually a challenge.

Building a Gigascale ML Feature Store with Redis, Binary Serialization, String Hashing, and Compression

When a company with millions of consumers such as DoorDash builds machine learning (ML) models, the amount of feature data can grow to billions of records with millions actively retrieved during model inference under low latency constraints.